Samsung delivers 600-mile solid-state EV battery as it teases 9-minute charging and 20-year lifespan tech
Samsung delivers 600-mile solid-state EV battery as it teases 9-minute charging and 20-year lifespan tech
Samsung delivers 600-mile solid-state EV battery as it teases 9-minute charging and 20-year lifespan tech
600 miles? Call me when they make one small enough to fit in a car
heyooooo
You joke but I literally pictured a super long battery for a solid bit before it clicked. I was thinking maybe it was coiled and technically really long like a spool of wire
Technically …… assuming cylindrical, it’s a long strip of metal rolled up. Not that long though
It’s such a dumb metric for batteries. I wish people would stop using it.
Eh, it’s really not that dumb assuming there’s an average electric discharge for electric vehicles. Most laypeople don’t understand kWh beyond “bigger number better”.
I mean its a more a metric for the over vehicle. It can move its self that distance on a charge.
The battery would kWh but that alone is insufficient for evaluating the vehicle
It's not stupid if it takes hours instead of minutes to charge up. If this tech really delivers, then I'll be more than ok with a 200 miles battery that charges in 3 minutes.
Miles
Metric
Pick one 😂
It's what people care about.
An EV that can only travel 300 miles on a charge is a complete nonstarter for me. It's simply not enough for trips I take with regularity.
Want a stupid metric? How about miles per gallon
If it were any other company I would be thrilled. With Samsung, this is going to be internet enabled, you'll need an app to turn your car on and off, and it'll probably play ads at high volumes constantly while driving.
I know you jest, but Samsung is a massive battery supplier.
These will be plain old dumb batteries
I dunno man, my 21700 cells just got an OTA update and now my flashlights wont turn on without watching an ad blinked out in mores code first.
Don't you know it's popular to shit on Samsung...or something?
Its a battery that'll be used by other manufacturers
One could hope that the designs get leaked and the tech becomes widely available without the corporate shitbags.
I am 100% certain that Samsung is currently in litigation regarding exactly this kind of thing at this very moment. These companies have massive arms for corporate espionage and the like, and because of patent laws, it's always worth spending time and money protecting your tech.
Wait, which company had their battery blowing up ? And were not safe for flight. If these battery blew up then it would be devastating.
...then it will catch fire.
…and will probably explode.
Are solid state batteries having issues with catching fire? I thought that was liquid batteries? Or is this just like saying everything bad that ever happened with lithium ion batteries will happen with everything else?
This
So what's the catch? Is it the price?
FTA:
Apparently, they are also rather expensive to produce, since it warns that they will first go into the "super premium" EV segment of luxury electric cars that can cover more than 600 miles on a charge.
So yes. Expensive initially.
Samsung
Battery
Don't fly your car with the Samsung battery.
You’d be shocked to know how many of your non-Samsung devices are using Samsung batteries.
Basically, yes. The big issue with solid state batteries is figuring out how to mass produce them at a price where someone will actually buy them.
Remember the Note 7 recalls?
https://www.gta5-mods.com/weapons/samsung-galaxy-note-7-bomb
The whole point of a solid state battery is that they don't do that.
Actually the risk of that should be lower
For a smaller EV It would take around 200kWh worth of battery for a 600 mile range. The current Tesla "superchargers" put out 250kWh. So whatever is going to charge this battery will have to output roughly an order of magnitude more power in order to charge the battery in 6 minutes. That's an impressive and scary amount of energy transfer.
Edit: I don't know where I got 6 minutes from. So not quite 10X the power for charging, but a LOT more than current chargers.
A couple things: solid state batteries weigh much less. Solid state batteries are 30-50% lighter per kWh. The initial ones will probably be closer to 30% lighter. A 100 kWh battery weighs about 1400 lbs (635 kg). Shaving off 400 lbs is pretty significant and results in much better range for the same battery capacity. The battery pack is likely closer to 150 kWh.
Second thing would be the charge rate. Yes, a supercharger can 250 kW output (not kWh BTW) but a few factors means that they often do not. First thing would be heat. If the charging cable or the battery gets too hot, the the rate slows down. The next thing would be the fact that current batteries have to start at a slow rate and end at a slow rate. Solid state batteries do not have those issue nearly as much and can more consistently hit that 250 kW output for a longer period of time.
This thing, they are likely using 350+ kW chargers. Higher than 350 kW is pretty rare but the odd 400 kW and 450 kW charger does exist.
And doing some more digging, I found that it is from 8% to 80% in 9 minutes. And even then, it does not say it is the same 150 kWh battery that is being charged that fast. This could be marketing crap where it is giving numbers for a ~85 kWh battery to compare it to EVs today. An Ioniq 5 takes about twice as long to go from 10-80% at 350 kW.
Super informative, thanks :)
The current Tesla "superchargers" put out 250kWh
kW
My wall outlet charger puts out 250 kWh, if you leave it in for 2 weeks straight...
So each supercharger will need it's own miniature fusion power plant. Great, now fast charging solid state batteries will always be 30 years away.
Yes, Teslas can charge at 250 kW, but they do not sustain that charging rate for long. As the battery charges, its charging rate drops. If newer battery technologies can sustain the higher charge rates longer, they could theoretically store more charge in less time.
This is the big reason why solid state batteries aren't an EV miracle. Pack density and charging speeds these days are already limited by cooling capacity. Trying to pump a few MW of power into a battery pack to get 600 miles in 9 minutes is going to melt the car, or require lugging around a huge cooling system.
Standardized interchangeable batteries would be neat. Pull into a battery station, a machine swaps out your packs and you're on your way faster than a fill-up.
EE here. Chargers put out power in units of kW, while batteries store energy in units of kWh or MJ or what have you. Otherwise, you're absolutely correct.
Typically Distributed Generation (DG) scale solar PV and battery storage sites are sized anywhere from 1 to 10 MW.
At 1 MW, you could run (1) charger at a speed of 1 MW, or (2) at 500 kW, etc. Usually need just (1) transformer for that size installation too.
At 10 MW, you can run each charger at 1 MW or so, but you're also talking about probably (4-10) transformers @ $250k USD a pop. Installation prices go up the more you demand in power transfer.
Then you need to consider that most DG projects need to pay for the upgrades to their downstream grid architecture, meaning reconducting or upsizing cable, breakers, switches, transformers, reactors, sensors, relays, etc.
Not saying it's impossible. You could co-locate and DC-couple solar PV or Wind parks next to charging points to get around some of the grid upgrades, but most people live in areas that require homes and grocery stores and other buildings than flat land meant for solar PV or Wind.
When it comes down to it, it's so much easier to just trickle charge your EV at night via arbitrage and when you're sleeping so all of this infrastructure doesn't have to been upgraded - and I'd argue upgraded needlessly because we need to save that copper and iron and materials for upgrades to the parts of the grid meant to interconnect renewables.
But there is no silver bullet to these things so we'll likely see more, larger chargers come through unless regulators stop it from happening.
I'd love to imagine around 20 years later people would be retrofitting old and heavy phone, laptop, and EV batteries with lighter and faster-charging ones...
20 years is very nice, how recyclable are they after that though?
The process for recycling solid state batteries is more complicated at the moment:
Who cares that’s ages away /s
But really, who cares. Landfills are a negligible amount of land usage and land used for them can be repurposed after closing the landfill. As long as you bury it enough to keep it out of the biosphere the environmental impact of not recycling is negligible. Recycling is preferable for lowering resource extraction sure but as long as its still more resource efficient than a gas car that's irrelevant.
To me this is the same as oil industry propaganda over wind turbine blades not being recyclable, like oh no it'll occupy a few cubic yards of a landfill in 15 years, better build a new coal/gas plant instead.
There are companies that claim to be ready to recycle most car batteries, but there are just not many old ones yet
What material is inside?
These articles call it "oxide" but what exactly is it?
Things which oxidized.
Seriously I hate articles like this.
Technically water is just Hydrogen-oxide.
Unfortunately the source does not seem to indicate what Samsung is using.
https://www.thelec.kr/news/articleView.html?idxno=29222
It does say that LG will be producing a sulfide based electrolyte.
the source does not seem to indicate
LOL that's why I wrote my question, smartie.
Also, what is a "solid state" battery anyway? A capacitor?
it's still a Li-ion (like most current rechargeables) but the electrolyte - the medium that transfers the ions from the anode to the cathode - (the + and -) inside the battery is made of a solid material instead of the current gen liquid ones. The benefits are less weight/size (as liquids take up more space than solids) and a more stable composition - the liquid electrolyte can't leak - the way batteries get gunky and corroded if left for a while
Needs to be an option to put these into todays EVs. You shouldn't have to buy a brand new car to get better battery technology.
Today's EV's batteries will already outlast the car.
Uhh do what? You're assuming the cars last less than 10 years? Who are these people throwing away cars after such a short time?
They outlast the car, but don't have the range and take too long to charge, that's the problem, not the longevity.
At first I thought, damn a 600 mile battery. That's a big battery.
Thankfully solid state batteries save 30-50% weight compared to current ones so batteries can be a bit smaller than they otherwise would be. This one will likely be 150 kWh.
Wait, are EV batteries even replaceable?
Not this one. It’s 600 miles long
I like this comment, because Samsung in other areas does indeed get confused about batteries being consumable.
Like their shitty phones. Even the bootloader tyrant huawei has pull-tabs. And of course their phone with the self-destruct feature.
Yes
TL;DR: Depends on what you mean.
Long version:
Disclaimer: I’m not an expert by any means, I haven’t vetted the links properly (or at all), they’re mostly there for illustration and if you want to read further. Also, the last time I actually read up on this is quite some years ago, so stuff may have changed in the industry and/or my memory on specifics is foggy. Many of the links lead to Tesla sources since I first looked into this topic back before Musk made it known to the public that he’s an insufferable human being.
Batteries are usually structurally integrated into the chassis with modern EVs, since that means space (and often small weight) savings, and is easier/faster to do in manufacturing.
With that knowledge, it is safe to assume that replacing a car’s battery is a difficult or next to impossible task, outside of end-of-life reuse.
But this is actually where it gets interesting, since EV batteries last many years anyways: What happens when the car’s time has come?
Well… the batteries can be reused. It’s not a trivial process, there’s several ways to do it, but the best intuitive explanation I’ve found is this: In raw ore, lithium and other metals are present at maybe 0.1 or 1%, per tonne of material. In batteries, it’s maybe 99% of reusable, expensive material. Even if you let it be 90 due to inefficiencies in recovery, or whatever, it’ll still make way more sense financially to work with old batteries – once you have the process figured out and automated machinery to get it done in place.
All that is assuming total destruction of the existing cells, which, depending on their state, may not even be necessary at all. In fact, it looks like all of that may not be needed for as much as >80% of batteries. Wow!
And we all know the best way to ensure companies are doing something is if the financial aspect aligns with their goals. It’s in their best self-interest to be able to and actually do this.
So: Replaceability per car – eh, doesn’t look to great. Replaceability across the industry? Perfect.
Aaaaaaand (deep breath)
Bullshit
Great, now car manufacturers need to figure out how they can make it stop holding charge at 10years.
I mean, the headline does say 20 years soooo...
Also, Teslas are approaching 10 years old and as far as I know their batteries are still going strong (yes, I know their quality control is otherwise sketchy). The Nissan Leaf batteries are getting pretty sketchy, but they don't have any battery conditioning - just air-cooled. That's not doing longevity any favors. All other major EVs have battery management systems and seem to be holding up ok. They're also generally warranted for 8 years. I don't think they'd only have a 2-year buffer between warranty and expected life.
Not to worry, there's lots of other parts they can cheap out on.
Finally. A true alternative to gasoline vehicles has begun to arrive. I'd never buy a current gen or older pure EV because I'd never want to spend $10,000+ on a battery replacement after its 10 years old or have something with a 250 mile range that takes 45 minutes to charge most of the way up. Give the world a 350 mile (real world usage) battery that can charge in under 15 minutes and lasts 20 years, that's total replacement territory.
Battery replacement after ten years is for very old EVs shrub much shorter range. The old model Nissan Leaf is what makes these stories. More recent cars have already outlasted the usage that the old pretty bad ones had by a significant amount. Your criticism is like saying you don't want a mobile phone because the buttons are so fiddly.
That's mighty hard of you to really claim, since EV's only started to become common about 12 years ago. It wasn't even until 2017 that the EV market broke 1% of vehicles on the road. Li-NMC batteries will eventually fail. They haven't been in EV's long enough to say they'll likely last 15 years. If they industry was really sure they would, the warranty period on them would be better than 8 years or 100,000 miles to provide 70% total capacity. If I only had barely over 2/3 of my battery capacity left after 100k miles I'd be pretty upset.
Huh
Hope they arent lipo. Have had two of those balloon up on me so far and wouldnt want one to set my car on fire from thermal runaway
solid-state battery
They can't do what you describe.
Solid state has zero possibility of doing either of those. That is one of the big selling points. The others are that they are 30-50% get, they last longer, and they can charge faster.
from what i understand, most vehicles use LiFe (i think this was wrong actually, i think most modern EVs use li-ion batts, they really should be using LiFe though.) battery technology, which is almost innert compared to LiPo technology, phones use Li ion batteries which are different from both of those.
Lithium batt technology sucks.
Both my samsung phones as well as all the lgs ive had used lipo batteries. Both lgs and one samsung (so far) have swollen enough to push the display out of the bezel.