That’s an interesting analogy. But just like too much current can melt a wire, I would assume there’s some upper limits to keep it from bursting pipes and fittings?
Everyone else is focusing on whether the rest of the world uses metric and not that fact that water pressure at a given faucet or shower head will be governed by bernoullis equation which will take 99 things into account such as:
The max height of the water reservoir
The height of your faucet
The design of the pipes leading from the reservoir to your faucet
And the location of the house/apartment. Houses higher up have lower water pressure and in apartment buildings the upper floors have lower pressure than bottom floors. 1bar of pressure lifts water 10 meters high. When constructing heating lines on a new building we might have the heating on on the first 3 floors despite the ends of the pipes leading to upper floors still being open and half of the building missing. The water wont spray out as long as we keep the pressure low enought that it doesn't rise to where the pipes end.
Noggie here. Code dictates a minimum of 2Bar (~30psi), but it's usually between 3-6 bar.
The pressure at my house was recently measured as I had some plumbing work done, and in my 2nd floor bathroom it clocked in at around 5 bar (75ish psi, I think)
Here in the UK the legal minimum is 1 bar per 10m of elevation. But usually the tap will have between 2 and 4 bars of pressure. Older buildings might only have 1 bar ofc. And by older I mean stuff that was built centuries ago and proper modern water supply is impossible to install.
My house is operating at around 3,5-4 bar after the pressure regulator. Since I have no gauge I can‘t deliver the pressure of the supply. I guess it is around 6 bar. Small town in Germany.
We also have mandatory check valves since a couple of years to prevent water from entering the supply from the buildings in case the pressure drops.
Doesn’t really matter the unit of measurement. Kinda like hp/ps or lb-ft/nm, there are equivalents. I’m more interested in the values, but you do have a valid point there.
In europe they mostly use Bars as the unit of measurement.
Mostly water pressure is around 1-2 bars as a minimum, but there are still places using different standards, for example the old style gravity-fed UK watersystems with sub 1 bar pressure, but those are not very common anymore.
Most domestic sanitary products in the EU are designed to be used on 1-5 bar pressure.
I read somewhere the domestic water pressure to be between 4-6 bar, however not sure how realistic it is accross the whole EU and also what you got at the mains and what you got when opening the faucet is two different numbers.
Because 1 bar is almost atmospheric pressure. Oddly enough I've never seen anyone use kPa, weather forecasts often use hPa (instead of mbar) to report atmospheric pressure.
The gravity systems in this case are not pressurized. They just have a water tank in the loft/airing cupboard and the hight of the tank determines the pressure. 0.1 bar for every 1 meter height. You open the faucet and gravity pushes out the water.
Its a nightmare, I used to live in UK and these systems are barely enough for anything really.