Skip Navigation
160 comments
  • This is hilariously bad.

    It doesn't take into account so many things, and it's extremely misleading.

    Most of these chemicals don't ever appear in products in their pure form, so there's so much here that simply isn't relevant.

    There's also consideration here that everything is by weight, and it makes sense to create that as a standard, but many of the pure forms of these items are far more dense than you would expect. One that stands out is uranium. A gram of it would be incredibly small, approximately 0.05 cm cubed. 1 lb is around 1.45" cubed (for my American friends).

    So it would be an insanely small amount. Meanwhile water is insanely light by comparison. While also safer per gram, so it's an insanely large amount of water before any damage can be done while a relatively small rock of uranium can tear your DNA apart.

    The whole chart is wildly misleading. It might be accurate, though, I have no idea if it is, but the fact is that it makes it seem like normal every day compounds like vitamin B will kill you at lower doses than uranium. While technically true based on weight, it makes uranium seem relatively safe by comparison and bluntly it's not. Even the smallest amount of pure uranium, which this chart would regard as "safe", would cause you to become incredibly sick for a very long time.

    I hope nobody gathers "new" information from this chart and decides to do something stupid; but honestly, there's a lot of idiots in the world, and if anyone is that dumb, I wonder if the average intelligence of the planet might increase a bit.

    • I mean, as an ex smoker i had a "I could try coke maybe?" intrusive thought when I saw nicotine's level compared to cocaine. Lmao

      • I look at that and I'm not sure that's right either. Maybe if you took concentrated nicotine extract (pure) and drank it, then yeah, it could become lethal.

        I don't think anyone can smoke enough cigarettes or vape enough to reach a dangerous toxicity level. I'm pretty sure you'd pass out long before reaching a fatal dose. So the only way you could get to that point is to either inject, ingest or otherwise absorb a lot of nicotine all at once. The usual delivery methods (via the lungs) would probably not work for this. I suppose if you rigged up a continual tobacco burner and hot boxed an area with smoke containing nicotine (either vapor or smoke from burning it), maybe? Or if you slapped on a few dozen nicotine patches after smoking a few packs and went to bed?

        The only other way I can think of to get that much nicotine in you is to buy high concentration vape liquid and drink it; but I'm pretty sure your body would simply vomit it back out and you'd survive. I'm sure it wouldn't be pleasant, but it wouldn't be fatal.

        Cocaine on the other hand.... I don't know enough about, but I'm sure people have OD'd on it, so I'm sure there are ways.

    • Shut up nerd! Come on everybody we're going to drink gasoline!

    • I was wondering if the radioactive materials toxicity was measured by chemical toxicity only, ignoring the radiation.

      • It's very likely.

        Everything radioactive is incredibly dangerous.

        I work with WiFi professionally, so I have a pretty good understanding of radio waves from that. On top of that, I'm a radio hobbyist, so I gathered a pretty good understanding of electromagnetic waves and how they operate... Mainly in the context of getting them from A to B successfully, but the physics behind it does not change regardless of frequency.

        While all radio waves can dissipate as heat when absorbed by an object, the wavelength of that signal affects how small of an object it will interact with. Lead is a good example, since it's a dense lattice of atoms and can interact with most electrical and magnetic fields. Radio waves have a hard time penetrating even a small layer of lead because they're usually too large of a wave to fit between the atoms. At a certain, very high, frequency, lead gets less effective, and only by making that lead layer thicker and thicker, basically putting the randomness of atom arrangement in the path of the wave, can the signal be stopped.

        When a high frequency wave interacts with flesh, like a person, it will usually penetrate a distance then be absorbed into the material, this is the basic principle that allows x-ray imaging to work. The more dense the material (bones vs muscle and organs and such), the more is absorbed, and you get a dark spot on the resulting image. I won't get into the development of the images, because they're usually inverted, that's a function of photography and how pictures work.

        Taken to the extreme, higher and higher frequency signals, like uranium produces, goes even further, interacting with the atoms that make up your DNA, and destroying them. It's a gruesome process and it takes a long time before the symptoms of radiation appear, and a very long recovery (or death) in most cases. With uranium, you'd die from radiation long before the toxicity of the uranium can kill you, even if you're "only" taking

        <something less than a lethal quantity>

        .

        Knowing as much as I do, radiation at this level is scary. It's silent, with no visible indication that it's happening, and it will kill you dead without any indication it ever existed. It always humors me when people take up arms against some new wireless technology where the principle frequency is under 100Ghz, and people are so afraid of it giving them cancer. The lightbulbs in your house are more apt to give you cancer than 5G or whatever. Light is an electromagnetic wave, the same as the radios in the 5G towers, but light is in the terahertz range, over 500x higher frequency than your wifi. Above that, in terms of frequency is UV-A, UV-B, etc, up to x-rays, and on. Above x-ray, is all the radioactive emissions from uranium, plutonium, etc. Literally thousands of times higher frequency than the evil 5G. EM only becomes ionizing (aka, dangerous) around UV-B, which is why you should always wear sunscreen.

        We (humans) only use higher frequency EM in the context of medical use (cancer treatments, x-rays, etc) in highly controlled environments, and for use in power plants and bombs. I'm sure some industrial uses exist too, but I'll just skip over that since it usually has the same controls as medical uses. The only other place I know of that we use radioactive material at all is in smoke detectors. We limit it, we regulate it, we keep the stupid public away from it, because they don't know the danger of such substances.

        Sorry for the rant, but yeah. Holy shit.

  • I can ingest nearly 10g of uranium and not die?

    Interesting.

    • Depends on the isotope, of course. There are different ways it can hurt you.

      • If you put together a critical mass of ²³⁵U, it undergoes fission and you die in seconds without needing to ingest it.
      • Naturally ocurring uranium (²³³U-²³⁸U, mostly ²³⁸U) has a half-life of billions of years, so it's very weakly radioactive. It would take a lot of it to harm you from decay radiation. Or very little if you pick a very unstable synthetic isotope outside the 233-238 range (but every element "has" such radioactive isotopes, though not in nature).
      • Uranium is chemically toxic, which is whal will kill you if you ingest a small amount of a common isotope.
      • If you've got more than 52 kg of uranium 235 on your hands, I would be alarmed to learn you didn't understand how criticality worked. Although now that I think of it, there's probably an awful lot of people who indirectly handle that much when they move around a nuclear warhead and most of them probably only had a single lecture on the concept.

        The thing that always blows my mind is just how freaking dense uranium is. A sphere weighing 52 kg is only 17 cm across.

    • I think they are referring to Uranium with natural isotopic abundance. Which is complete bullshit when you put a picture of a nuclear power plant behind it – which in most cases can not function with the natural isotopic abundance (heavy water reactors being the exception, not the rule).

160 comments