A YouTuber took Tesla’s Cybertruck on a ride to see if it can actually hit its advertised 320-mile range, only to find out that its could only reach 79% of the target. When YouTuber Kyle Conn…
Tesla Cybertruck gets less than 80% of advertised range in YouTuber’s test::A YouTuber took Tesla’s Cybertruck on a ride to see if it can actually hit its advertised 320-mile range, only to find out that its could only reach 79% of the target. When YouTuber Kyle Conn…
I hate Tesla and especially the Cybertruck as much as the next guy, but this was a highway test and that sounds like a completely normal result.
I own a Bolt EV which is rated for 259 miles of range. On the highway, that's more like ~220. That sounds bad, but the other side of it is that I get ~300 miles of range during my normal work commutes through the city. This is just how EVs are, the estimated range is based on a mixed test. EVs are backwards compared to ICE, you'll get ~20% less range than the EPA estimate driving highway speeds and ~20% more doing purely city driving.
The insideevs article reports 239 miles for a Model 3 Performance while clicking all the way through to the actual source of the testing "Whatcar" reported 324 miles for a M3 LR. What car indeed. I don't believe these low numbers.
I'm sure Tesla has been overly aggressive with the range numbers. Especially people in colder climates must be getting far less than advertised. But these low-effort articles are not the best of sources.
It's worth noting that he recently did the same test, with similar temps, in the EV9 (which is also super inefficient on the highway), and got over the EPA range. IIRC most of his range tests exceed EPA numbers.
Why highways are worse than city streets? Highway doesn't have traffic jams, frequent stops when you just burn fuel\electricity to move a little further. It's just supporting the momentum of a car. With more than one gear it's trivial.
Maybe I don't understand something about e-cars, but from my experience I have wasted like 30% less of fuel just driving on highways from city to city for the same distance I drove in town.
In traffic, the largest reduction of efficiency comes from accelerating and the braking. You use energy to start moving (proportional to m V^2) and then you dump that energy into heat in your brakes to stop. The second comes from idling where you use energy to keep the engine rotating. As others have mentioned, EVs use regenerative braking so a substantial portion of the energy used to slow and stop the car is used to recharge the battery. EVs have no need to keep an engine running so unless you’re running the a/c there are minimal demands on a stopped/idling EV.
On the highway, you have the internal friction in the drivetrain to overcome, the constant deformation of the tires, and - most importantly - wind resistance, which is proportional to cd x rho x V2.
Cd (drag) and rho (air density) are low, but that V (speed) squared means driving at 75mph incurs 25x the energy use as driving at 15 mph. An EV gets no sage harbor here - plowing through a fluid (air) is essentially the same work.
To give you a sense of numbers, my vehicle (F150) gets less than 10mpg the 5 miles to my local pool/gym. The speed limit is 25 mph but there are stop signs every block or two. Lots of braking loss. On back roads with gentle curves and a 45 mph limit I get close to 30 mpg. That’s the sweet spot between overcoming transmission friction and air resistance. On the highway at 60 mph I get 22-23 mpg. At 78-79 mph I get 19 mpg. These are all generally on flat stretches using the 6 min average on my dashboard.
(Sorry for the long post…I’m an engineer and mechanical efficiency and aerodynamics are my happy place)
Traveling at high speeds just takes a lot of power regardless of fuel, but ICE cars are so inefficient in city driving it makes highways look good in comparison. 25-50mph might be more efficient, but every time you brake that kinetic energy is turned into waste heat, totally negating the benefit of driving slower.
EVs on the other hand have regenerative braking systems. Rather than using friction to slow the car down, they just use the motors by applying resistance to the wheels. The kinetic energy is used to charge the battery while slowing the car down. You get the benefit of slower speeds without much braking loss, so this is where EVs shine.
Frequent lite braking allows the regenerative brakes to do all or almost all the work, meaning you recover a good chunk of the energy you’re using in city/stop-and-go traffic.
Infrequent braking or hard braking (which requires the service brakes) means less energy recovered, so shorter range.
In addition to what atmur said, EVs don't have the baseline inefficiencies an internal combustion engine requires just to keep itself running. ICEs waste a huge amount of energy just running, which gets lost as heat, vibration, and noise. EVs have the advantage of being able to run just as much as needed, so you don't throw away huge amounts of energy at low speeds.
The efficiency curve of an ICE vehicle generally peaks somewhere around 70-90km/h, due to a combination of wasted energy at low speeds and gearing ratios. EVs peak much lower, generally in the 35-55km/h range. This is due to not having the low speed overhead of an ICE, but still being subject to high speed inefficiencies like rolling resistance and drag.
And EVs and hybrids have regenerative braking so that does some recharging of the batteries. It's not going to be stellar, but in stop and go traffic, it could definitely had some miles to range. There's a lot less stopping on highways.
Regenerative braking isn't magical. It doesn't add range. It reduces range lost by stopping. Conservation of energy is still a thing.
If you were to drive any speed uninterrupted until the vehicle died, then attempted the same drive with stops every mile, the vehicle wouldn't make it to the end.
It's not only not "not stellar", it's the reason hybrids and EVs have higher city miles than highway. Acceleration takes a lot of energy compared to maintaining speed, and regenerative breaking recaptures most of that for use next time you take off.
It's why hybrids can increase fuel mileage so much without being plugged in. It's huge.
If you're ever driving an EV that has the option to see real time flow of watts (with numbers, not just graphics), watch what it does while taking off, coming to a stop, and cruising at speed (both slower city speeds and higher highway speeds). You'll probably see fifty to a hundred plus kW flow either direction while speeding up and slowing down, and under five while cruising
Yeah this is what it's like with my mach e as well. I have an extended range and I get 300ish miles town/city but on the highway probably 240. So realistically I charge every 190-220 miles on long road trips with the 80% fast charging stations.
I have had my bolt, with new battery, for nearly 3 years. On interstate driving in summer I'm not sure I'd go beyond 180 miles, pretty sure 200 miles I'd be in turtle mode at least. Currently in winter I'm probably limited to about 160 tops.
Yeah ambient temperature dramatically affects the range of EVs. One time I took my Model 3 on a roadtrip and I had quite a bit of range left when I got to the hotel, but the next morning the temperature had plummeted and suddenly I had to make for the nearest charger instead of continuing on for a while. It's just something we have to get used to with EVs I guess.
You notice some differences just from the air temperature going into the engine too. Especially in a turbocharged car.
Colder air means denser air. Denser air means more oxygen molecules in the same volume of air. More oxygen means the engine can put more fuel and produce a bit more power.
Depending on your driving style, i.e. If you have a heavy foot, this means a bit more power and fun, but you're burning a bit more gas too.
Something else i dont see mentioned often either is that ICE cars generate heat as a waste byproduct of producing power, but electric cars dont produce usable heat, so if your in an area where its cold then using the AC heating will be additional battery usage coming off your driving range
Which is true, many countries have planned bans on the sale of new ICE cars by 2035. Which is good, even now electric cars are starting to be competitive without subsidies.
I would maybe extra-tax ICEs instead of banning them, so you still have your exotic cars with vroom sounds...
He ran his standard test. Most other EVs in this test exceed the EPA range, most notably he recently tested the EV9 (a literal brick) in similar temperatures.
The EPA highway test is 55mph or something around that. These real world tests are all 70mph+
The only way you do better or equal on a 70mph test is
Advertise a smaller range than you actually have
Gear the motor for high speed and have worse performance at lower speeds (EVs typically do better at low vs high, but you could make low even worse)
Have a multi gear motor like Porsche and I think some Audi. Then you don't have to optimize the motor on 1 gear, but it substantially increases cost (but it's a porsche) and complexity and repair costs.
The EPA just needs to make a 70mph test part of the test cycle and make them advertise that.
The gearing in the Taycan/E-Tron GT aren't for efficiency, but for speed. Electric motors don't really lose efficiency as they spin faster, but they do start to lose the ability to move the car faster against the exponentially increasing wind resistance. This isn't an issue for most cars (they top out around 110mph), but for something like the Taycan it's important (tops out around 155mph).
The 70mph situation is more that manufacturers de-rate their cars. Both the Taycan and the Lyriq (a SUV brick) are well-known for demolishing their EPA ranges in 70mph cruising tests. Even the EV9 (the brickiest brick) exceeded the EPA range in this same test.
That's honestly way better than I expected. Based on everything else Musk has done recently, and the comedy of errors the Cybertruck has been, I expected 80% less
As someone who bought one of their cars the only real positive is that the charging network is available 24 hours a day and very prominent across most of my travel routes.
Additionally, I would say wait out for this industry to get better since every single manufacturer of EV's is full of absolute horse shit in regards to range and safety, ESPECIALLY anything not coming from USA or Europe.
Byd's are fucking death traps
I haven't done a ton of research on the matter so definitely take this with a grain of salt but I have heard that the volt has been receiving pretty good reviews.
I would say for sure that you'll want to investigate a TON before making your purchase, you do not want to end up in a tesla situation like I did where an update to the car after a lawsuit provides direct evidence that tesla lied to everyone about the range of the vehicles.
The price/performance ratio on tesla vehicles made sense when they were still in development, but tesla is now one of the largest companies in the world and should not be allowed to screw their customers over like this anymore, but I feel the same way about most technology companies these days and the law, unfortunately, does not appear to agree.
Heh here's one for people. In my province at least the best way to get cheap 24/7 fuel in every corner even the podunkest no stoplights villages is to get a free membership with the local fuel co-op (UFA here)
I regularly save 2-10 cents a litre and have 24/7 access and even shitters and showers in most locations all for no extra money or work on my end other than the initial sign up.
I hope that works out for everyone that uses it but the key reason I ended up getting an electric vehicle after my ICE vehicle broke down was to avoid oil and gas prices, especially in regards to the continuing degradation of the geopolitical situation in the middle east where OPEC+ produces and transports more than 80% of the world supply of usable oil.
I hated waking up and wondering if the dice roll would break my bank that day. Although my car ended up a fair bit more expensive than I had wanted, the vehicle has nearly paid for itself with all the charges I didn't have to pay at the pump.
This isn't an endorsement for electric vehicles just a note of a positive side that I personally was able to avoid.
If my country wasn't completely backwards and we had more nuclear facilities and less dependence on oil barons, I'd be happier, but the reality is not everyone has the ability to change over, and even I would still be using an ICE vehicle today if insurance didn't cover the rest of the price of my old car when my accident happened.
What was the EPA rated highway range? The 320 mile range is the EPA combined city/highway which you won't hit doing entirely highway but you would beat doing entirely city.
Due to electric drivetrains having minimal fixed losses at low speed unlike internal combustion engines. Aerodynamic losses start becoming the largest factor for EVs at relatively low speeds (25-35 MPH) since other losses at so low. This shows up on tests as higher city efficiency and lower highway.
For an internal combustion engine you are burning a large amount of energy just to keep the engine running, so the slower the speed, the less distance traveled for the fixed amount of running losses and lower the MPG. It isn't until higher speeds (55-65 MPH) that aerodynamic losses become the largest factor. This manifests as lower efficiency in the city tests and higher highway.
Aerodynamic drag increases with the square of speed. Other frictional losses might follow a similar pattern.
Cars have other sources of inefficiency too (such as idle power consumption), so all cars have a different optimum speed for maximum range (which depends on wind speed, direction & temperature too).
Is this any different than EPA rated MPG listed on vehicles? Obviously their quoted range is an absolute best case scenario. Still fun to meme on the cyber truck though.
It's not a best case scenario - it's a precisely repeated series of accelerations, cruising with a specific amount of resistance applied to the wheels, and braking.
It won't match any real world drive. In the real world there are other variables, traffic, wind, hills, speed limits, etc. It's also intended to be a fairly typical highway drive, so in ideal conditions you will do better than the EPA range. Down hill, for example, the cybertruck can drive forever (unlike an ICE, which is so inefficient it uses energy even going down hill).
Modern ICE cars do not use fuel when coasting down hill. The computer completely shuts off the fuel injectors when coasting and the physical energy from the car rolling keeps the engine turning over.
I've found EPA MPG estimates to be fairly accurate. Unless I'm driving aggressively or there's a lot of elevation change the highway average has been spot on the EPA number in every car I've driven enough to pay attention to the MPG.
Because a lot of other EVs that he's run on the same test exceed the EPA numbers, some by a quite considerable margin. The Taycan for example is well-known for exceeding the EPA estimates by as much as 50%. He recently tested the EV9 (a brick) on the same test in similar temperatures, and it also exceeded the EPA numbers.
Yeah, it's not any different than ICE vehicles, people here just love being on the Elon hate train. If it's related to anything he touches, you'll mostly only see negative comments be upvoted. Me saying this tends to set some off too so